

#### The Civil Engineering Practice

11 Tungsten Building George Street Fishersgate Sussex BN41 1RA

T. 01273 424 424
E. design@civil.co.uk
www.civil.co.uk

### Flood Risk Assessment

Proposed residential development at

North Site Newgate Lane, Fareham

On behalf of

**Fareham Land LP** 

April 2019

#### **Document History and Status**

#### Project Number 23013

| Date         | Version | Prepared By                   | Reviewed By                   | Approved By              |  |
|--------------|---------|-------------------------------|-------------------------------|--------------------------|--|
| 29 May 2018  | 1.0     | Steve Doughty                 | Bava Sathan<br>CEng MICE FIHE | Stuart Magowan IEng MICE |  |
| 8 June 2018  | 1.1     | Steve Doughty                 | Stuart Magowan IEng MICE      | Stuart Magowan IEng MICE |  |
| 7 Sep 2018   | 2.0     | Steve Doughty                 | Stuart Magowan IEng MICE      | Stuart Magowan IEng MICE |  |
| 1 April 2019 | 2.1     | Nathan Shields                | Stuart Magowan IEng MICE      | Stuart Magowan IEng MICE |  |
| 8 April 2019 | 2.2     | Martin Kempshall<br>CEng MICE | Stuart Magowan IEng MICE      | Stuart Magowan IEng MICE |  |

This document has been prepared in accordance with the scope of services for The Civil Engineering Practice's appointment with its client and is subject to the terms of the appointment. It is addressed to and for the sole use and reliance of The Civil Engineering Practice's client. The Civil Engineering Practice accepts no liability for any use of this document other than by its client and only for the purposes, stated in the document, for which it was prepared and provided. No person other than the client may copy (in whole or in part) use or rely on the contents of this document, without the prior written permission of The Civil Engineering Practice.

Any advice, opinions, or recommendations within this document should be read and relied upon only in the context of the document as a whole. In preparing this document, information and advice may have been sought from third parties. The Civil Engineering Practice cannot be held liable for the accuracy of third party information.

The information contained within this report takes precedence over that contained within any previous version of this report.

## **CONTENTS**

| 1   | Non Technical Summary              | 1  |
|-----|------------------------------------|----|
| 2   | Planning Policy Context            | 2  |
| 2.1 | National Planning Policy Framework | 2  |
| 2.2 | Lead Local Flood Authority         | 2  |
| 2.3 | Fareham Borough Council            | 2  |
| 2.4 | Local Planning Policy              | 2  |
| 3   | Existing Site                      | 4  |
| 3.1 | Site Location                      | 4  |
| 3.2 | Site Description                   | 4  |
| 3.3 | Existing Drainage                  | 5  |
| 3.4 | Geology and Groundwater            | 6  |
| 4   | Flood Zone and Flood History       | 7  |
| 4.1 | Flood Zone                         | 7  |
| 4.2 | Flood History                      | 7  |
| 5   | Flooding Potential                 | 8  |
| 5.1 | Tidal Flooding                     | 8  |
| 5.2 | Fluvial Flooding                   | 8  |
| 5.3 | Groundwater Flooding               | 8  |
| 5.4 | Overland Flow                      | 8  |
| 5.5 | Flood Routing                      | 9  |
| 6   | Development Proposals              | 10 |
| 6.1 | Description                        | 10 |
| 6.2 | Drainage Strategy                  | 10 |
| 6.3 | Foul Water                         | 11 |
| 6.4 | Water Quality                      | 12 |
| 7   | Safe Development                   | 14 |
| 7.1 | Site Location                      | 14 |
| 7.2 | Flood Routing                      | 14 |
| 7.3 | Risk to Others                     | 14 |
| 8   | Conclusions                        | 16 |
| 9   | List of Appendices                 | 17 |

#### 1 Non Technical Summary

- 1.1 This Flood Risk Assessment has been undertaken in accordance with the National Planning Policy Framework on behalf of Fareham Land LP in support of an Outline Planning Application for the demolition of existing buildings and development of up to 75 dwellings, open space, vehicular access from Newgate Lane and associated ancillary infrastructure, with all matters except access to be reserved on land between Newgate Lane and Newgate Lane East, Fareham.
- 1.2 This Assessment is to be read in conjunction with all planning, architectural and other reports that accompany the Outline Planning Application for the proposed development.
- 1.3 The site is located in Flood Zone 1.
- 1.4 The type of development proposed is classified as more vulnerable and suitable in Flood Zones 1 and 2.
- 1.5 The proposed development will incorporate a sustainable drainage system which will discharge surface water at the existing greenfield runoff rate into the existing watercourses.
- 1.6 Sufficient storage can be provided on site to cater for all storm return periods up to and including the 1:100 year rainfall event with a 40% allowance for climate change.
- 1.7 The exact nature of the storage will be confirmed at detailed design stage but can be accommodated using a variety of methods such as permeable paving, voided subbase and cellular tanks.
- 1.8 Foul drainage will be discharged via a foul pumping station into the existing public foul sewer beneath Newgate Lane.
- 1.9 This report concludes that the proposed development is suitable at this location and there are no significant flooding or drainage risks.

#### 2 Planning Policy Context

- 2.1 National Planning Policy Framework
  - 2.1.1 National Planning Policy Framework aims to reduce flood risk through development opportunities. The policy framework aims to ensure flood risks and the predicted effects of climate change have been taken into account and appropriate measures put in place to ensure that:
    - The development is safe
    - Where possible the flood risk overall is reduced
    - Increased flood risk does not occur elsewhere
    - Appropriate mitigation measures are employed to deal with these effects and risks

#### 2.2 Lead Local Flood Authority

- 2.2.1 Hampshire County Council became a Lead Local Flood Authority under the Flood and Water Management Act 2010 and were given a series of new responsibilities to coordinate the management of local flood risk.
- 2.2.2 As part of their role Hampshire County Council have produced the following documents
  - Local Flood Risk Management Strategy dated July 2013
  - Preliminary Flood Risk Assessment dated April 2011
- 2.2.3 All documents have been reviewed in the preparation of this report.

#### 2.3 Fareham Borough Council

2.3.1 Fareham Borough Council issued a Strategic Flood Risk Assessment (SFRA) as part of the Partnership for Urban South Hampshire dated 2016.

#### 2.4 Local Planning Policy

- 2.4.1 Fareham Borough Council adopted the Local Plan Core Strategy in August 2011 and the Local Plan 2015-2026 on 8 June 2015.
- 2.4.2 The following policies are of specific relevance to the Flood Risk Assessment.

2.4.3 **Policy CS15** Sustainable Development and Climate Change states that 'The Borough Council will promote and secure sustainable development by directing development to locations with sustainable transport options, access to local services, where there is a minimum negative impact on the environment or opportunities for environmental enhancement. Development must not prejudice the development of a larger site.

This will be achieved by:

- Ensuring that the scale and density of the proposal makes an
  efficient use of land. With a minimum of 60dph within areas with
  high multi-modal transport accessibility and good access to a range
  of social, environmental and economic infrastructure, taking account
  of the character of the location.
- Ensuring that there is sufficient capacity available, or will be made available, in existing infrastructure to meet the needs of the new development including adequate land and funding for waste management. Avoiding unacceptable levels of flood risk and proactively managing surface water through the promotion of sustainable drainage techniques.'
- 2.4.4 **Policy DSP2** Environmental Impact states that 'development proposals should not, individually, or cumulatively, have a significant adverse impact, either on neighbouring development, adjoining land, or the wider environment, by reason of noise, heat, liquids, vibration, light or air pollution (including dust, smoke, fumes or odour).

Development should provide for the satisfactory disposal of surface and waste water and should not be detrimental to the management and protection of water resources.'

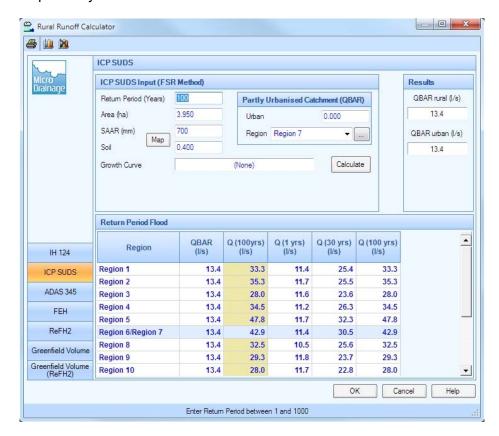
#### 3 Existing Site

#### 3.1 Site Location

3.1.1 The development site is located on land to the east of Newgate Lane, Fareham at Ordnance Survey reference SU 571 033. The nearest postcode is PO14 1BA.



3.1.2 A copy of the site location plan is located in Appendix 1 at the rear of this report.


#### 3.2 Site Description

- 3.2.1 The site is approximately 3.95ha in area and currently undeveloped.
- 3.2.2 Existing ground levels are at their highest at approximately 9.8m AOD at the north eastern site boundary and their lowest at approximately 8.4m AOD at the southwest site boundary.
- 3.2.3 The site is bounded on its north, south and east by agricultural land and to the west side by Newgate Lane.
- 3.2.4 The River Alver passes through the western part of the site. There are also existing watercourses along the northern and eastern site boundaries.
- 3.2.5 The River Alver is classified as Main River.

3.2.6 A copy of the existing site layout plan is located in Appendix 2 at rear of this report.

#### 3.3 Existing Drainage

- 3.3.1 The site is currently in agricultural use and has no positive surface water drainage infrastructure. Rainfall currently discharges via overland flow routes directly into the existing watercourses on the site.
- 3.3.2 The existing greenfield runoff rate has been established using XP Solutions Microdrainage.
- 3.3.3 Q<sub>bar</sub> has been established at 13.4l/s and the 1:100 year peak runoff at 42.9l/s. The equivalent greenfield runoff rates are 3.4l/s/ha and 11l/s/ha respectively.



- 3.3.4 There is a 225mm diameter public foul sewer located approximately 3m beneath Newgate Lane adjacent to the southwest corner of the site.
- 3.3.5 A copy of the sewer records are located in Appendix 3 at the rear of this report.

#### 3.4 Geology and Groundwater

- 3.4.1 The British Geological Survey borehole log data confirms clay substrata.
- 3.4.2 Water strikes were recorded at between 1m and 5m below ground level and are likely to be perched water tables within the clay substrata.
- 3.4.3 The "Magic Map" available from DEFRA confirms that the site is located above a minor aquifer classified as having high vulnerability.
- 3.4.4 Copies of the geological borehole data are located in Appendix 4 at the rear of this report.

#### 4 Flood Zone and Flood History

#### 4.1 Flood Zone

4.1.1 The Environment Agency's Product 4 data confirms that the site is located in Flood Zone 1 and is not at risk of flooding from rivers or the sea from anything less extreme than a 1:1000 year flood event.

#### 4.2 Flood History

#### 4.2.1 Environment Agency

4.2.1.1 The Environment Agency map of historic flood incidents does not identify any historic flooding recorded at or in the wider vicinity of the proposed development site.

#### 4.2.2 Hampshire County Council

4.2.2.1 Neither the Preliminary Flood Risk Assessment (PFRA) dated June 2011 nor the Local Flood Risk Management Strategy dated July 2013 identify any specific flood incidents in the immediate vicinity of the site.

#### 4.2.3 Fareham Borough Council

4.2.3.1 The Strategic Flood Risk Assessment (SFRA) as part of the Partnership for Urban South Hampshire dated 2016 does not identify any specific flood incidents within the vicinity of the site.

#### 5 Flooding Potential

#### 5.1 Tidal Flooding

5.1.1 The site is located 3.30km from the coast and is not at risk from tidal flooding.

#### 5.2 Fluvial Flooding

5.2.1 The area of the proposed site is within Flood Zone 1 and is not at risk of flooding from rivers or the sea from anything less extreme than a 1:1000 year flood event.

#### 5.3 Groundwater Flooding

- 5.3.1 Borehole logs hosted on the British Geological Survey website confirm that groundwater has been recorded between 2m and 5m below ground level.
- 5.3.2 Figure 7 of the Hampshire Groundwater Management Plan shows the site to be within a 1km square grid having between 25-50% probability of being affected by groundwater flooding.
- 5.3.3 There is no indication in the Preliminary Flood Risk Assessment or other available flood maps of groundwater flooding affecting the site.

#### 5.4 Overland Flow

- 5.4.1 The surface water flood map provided by the Environment Agency confirms that the vast majority of the site is at very low risk of flooding from overland flows.
- 5.4.2 There are areas along the western section of the site along the alignment of the River Alver which are indicated as being at low medium and high risk of flooding from surface water.
- 5.4.3 This is not however replicated in the fluvial flood mapping and there are no records of any overland surface water flow affecting the site.
- 5.4.4 Drainage features including all ditches and overland flow routes are to be maintained as existing at current capacities.
- 5.4.5 Copies of correspondence received from the Environment Agency together with flood maps are included in Appendix 5 at the rear of this report.

#### 5.5 Flood Routing

- 5.5.1 The natural route for flood waters to dissipate, should any ever occur on the site, is towards the River Alver which is located adjacent to the western boundary and flows through the western side of the site.
- 5.5.2 A plan showing the existing flow paths is located in Appendix 6 at the rear of this report.

#### 6 Development Proposals

#### 6.1 Description

- 6.1.1 The development proposals are for the demolition of existing buildings and development of up to 75 dwellings, open space, vehicular access from Newgate Lane and associated ancillary infrastructure.
- 6.1.2 The combined roof area of the buildings and external hard standing areas is anticipated to be approximately 30% of the total site area at approximately 1.19ha.
- 6.1.3 A copy of the Illustrative Master Plan is located in Appendix 7 at the rear of this report.

#### 6.2 Drainage Strategy

- 6.2.1 There are short sections of public surface water sewers to the west of Newgate Lane. These discharge into the River Alver.
- 6.2.2 Based upon the clay geology of the area it is anticipated that discharge of surface water runoff by infiltration will not be sufficient to meet current guidance and National Planning Policy Framework.
- 6.2.3 For the purposes of the Outline Planning Application a drainage strategy based on a restricted discharge to the onsite watercourses has been progressed with confirmation that suitable storage can be provided on site.
- 6.2.4 The surface water drainage system will be designed to comply with National Planning Policy Framework and its supporting guidance documents including the Non Statutory Technical Standards for SuDS.
- 6.2.5 As previously noted the  $Q_{bar}$  greenfield runoff rate for the site is 3.4l/s/ha. With an impermeable area of approximately 1.19ha this equates to an equivalent  $Q_{bar}$  greenfield runoff rate for a developed area of approximately 4l/s.
- 6.2.6 Such low levels of restriction are impractical and in accordance with the Environment Agency guidance as noted in their Rainfall runoff management for Developments (Report SC030219) a restriction of 5l/s is proposed for the 1:100 year +40% rainfall event.

- 6.2.7 Preliminary calculations have been prepared in order to establish the required storage for a 1:100 year storm including an additional 40% increase in rainfall intensity to account for future climate change.
- 6.2.8 In accordance with the guidance document supporting the Non Statutory Technical Standards for SuDS an allowance for Urban Creep of 10% for increase to impermeable area has also been included in the preliminary design for the drainage system. This is based on the proposed residential development density of 22 dwellings per hectare.
- 6.2.9 A total approximate volume of 1,085m³ of storage will be required to store the surface water runoff generated by the development with a restricted discharge rate of 5l/s.
- 6.2.10 The proposed surface water drainage strategy will incorporate the combined use of sustainable drainage techniques such as swales and shallow landscaped depressions or filter strips and French drains.
- 6.2.11 Sufficient storage can be provided on site to cater for all storm return periods up to and including the 1:100 year rainfall event with a 40% allowance for climate change.
- 6.2.12 The exact nature of the storage will be confirmed at detailed design stage but can be accommodated using a variety of methods such as permeable paving, voided subbase, cellular tanks and ponds.
- 6.2.13 The drainage proposals will be further clarified at detailed design stage subject to further site investigations and testing and will be designed to comply with National Planning Policy Framework and its supporting guidance documents including the Non Statutory Technical Standards for SuDS.
- 6.2.14 A copy of the preliminary surface water storage calculations is located in Appendix 8 at the rear of this report.

#### 6.3 Foul Water

6.3.1 Foul drainage will be discharged via a foul pumping station into the existing public foul sewer beneath Newgate Lane.

#### 6.4 Water Quality

- 6.4.1 The proposed development is for residential use only. In accordance with CIRIA SuDS Manual 2015 (Report C753) the pollution hazard level for such types of development are considered low. Where surface water runoff is to be discharged into watercourses the SuDS components are only required to control potential contaminants for the frequent low intensity rainfall events as the natural high volume of flows within the receiving water body during a high-intensity rainfall event is likely to dilute any contaminants within the water body.
- 6.4.2 The surface water drainage scheme will include mitigation to ensure water quality before the discharge point will be treated and any pollution risk mitigated prior to its discharge to the receiving water body.
- 6.4.3 Table 26.2 in Chapter 26 of CIRIA report C753 The SuDS Manual provides Pollution Hazard Indices for varying land types and uses and defines runoff from roofs to be at very low risk potential for pollution.
- 6.4.4 Runoff from driveways of individual properties, low trafficked roads and residential parking are considered to be at low risk potential for pollution.
- 6.4.5 The following table summarises the anticipated pollution index from the proposed development.

| Land Use                                                         | Pollution<br>hazard<br>level | Total<br>suspended<br>solids (TSS) | Metals | Hydro-<br>carbons |
|------------------------------------------------------------------|------------------------------|------------------------------------|--------|-------------------|
| Residential roofs                                                | Very Low                     | 0.2                                | 0.20   | 0.05              |
| Property driveways, low trafficked roads and residential parking | Low                          | 0.5                                | 0.4    | 0.4               |

#### **Pollution Hazard Indices**

6.4.6 Where multiple drainage components are used in series the individual mitigation index of secondary and tertiary components is lowered due to reduced performance associated with primary treatment. In accordance with Tables 26.3 and 26.4 of The SuDS Manual the mitigation indices for the different drainage components are shown in the following table.

| SuDS Type        | Total suspended solids (TSS) | Metals | Hydro-carbons |
|------------------|------------------------------|--------|---------------|
| Filter Strip     | 0.4                          | 0.4    | 0.5           |
| Permeable Paving | 0.7                          | 0.6    | 0.7           |
| Swale            | 0.5                          | 0.6    | 0.6           |
| Detention Basin  | 0.5                          | 0.5    | 0.6           |
| Pond             | 0.7                          | 0.7    | 0.5           |

#### **Mitigation Indices**

- 6.4.7 The proposed drainage strategy will incorporate measures to meet or exceed the water quality target requirements and therefore complies with the Water Framework Directives for discharge of runoff into controlled waters.
- 6.4.8 The site will be maintained by the operator. An outline drainage maintenance schedule is located in Appendix 9 at the rear of this report.

#### 7 Safe Development

#### 7.1 Site Location

- 7.1.1 The site is located entirely in Flood Zone 1.
- 7.1.2 With reference to Table 2 (Flood Risk Vulnerability Classification) and Table 3 (Flood Risk Vulnerability and Flood Zone Compatibility) of the Technical Guidance to the National Planning Policy Framework the proposed development is classified as more vulnerable and is considered suitable in Flood Zones 1 and 2.

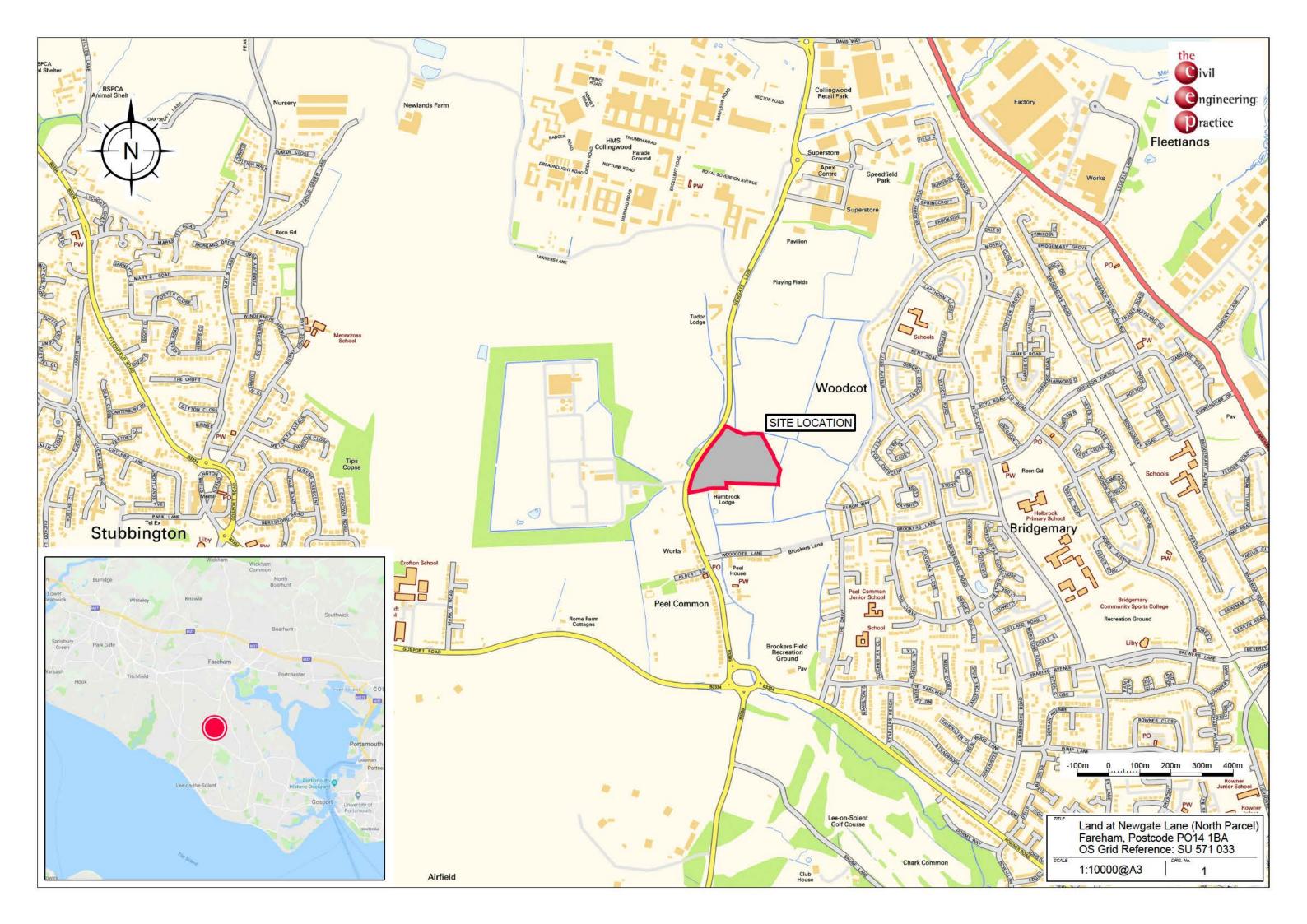
#### 7.2 Flood Routing

- 7.2.1 The natural route for flood waters to leave the site if any ever occur is either through the River Alver to the west of the site or towards the existing ordinary watercourses on the eastern boundary of the site.
- 7.2.2 The surface drainage system will be designed to account for the topography of the site and maintaining the natural flow routes. The surface water drainage system will be designed to cater for the 1:100 year rainfall event including an allowance for climate change. There are no proposed changes to the natural flow routes thus retaining exceedance flow from the undeveloped part of the site as current.

#### 7.3 Risk to Others

- 7.3.1 The proposed surface water drainage system will be designed to current standards incorporating SuDS elements providing treatment, attenuation and storage which will minimise runoff leaving the site during times of heavy rain.
- 7.3.2 Allowance has been made for 40% increase in rainfall intensities which is in accordance with the latest figures published by the Environment Agency and in accordance with the requirements under the National Planning Policy Framework.
- 7.3.3 Allowance has been made for Urban Creep accounting for future property owners extending their houses or adding to the impermeable areas.
- 7.3.4 The proposed drainage system will incorporate treatment prior to final discharge destination thus mitigating the risk of pollution from the site.

- 7.3.5 Foul flows from the residential development will be discharged to the public sewer beneath Newgate Lane subject to negotiation with Southern Water.
- 7.3.6 The risk of flooding to others due to the development proposals is negligible.


#### 8 Conclusions

- 8.1 The site is located within Flood Zone 1.
- 8.2 The type of development proposed is classified as more vulnerable and suitable in Flood Zones 1 and 2.
- 8.3 The site is not at risk of flooding from tidal or fluvial sources or at significant risk of flooding from groundwater.
- 8.4 There are areas within the western section of the site along the alignment of the River Alver which are indicated as being at low, medium and high risk of flooding from surface water.
- 8.5 The site layout master plan includes public open spaces in the vicinity of the River Alver and no residential dwellings or associated infrastructure are proposed within these areas.
- 8.6 There are no recorded instances of historic flooding at or in the wider vicinity of the proposed development site.
- 8.7 Surface water runoff generated by the proposed development can be attenuated onsite for all rainfall events up to the 1:100 year event including an allowance for climate change and an additional allowance for future increase in impermeable areas.
- 8.8 Foul drainage will be discharged via a foul pumping station into the existing public foul sewer beneath Newgate Lane.
- 8.9 In terms of flood risk planning the proposed development is safe and suitable at this location and is considered appropriate.

#### 9 List of Appendices

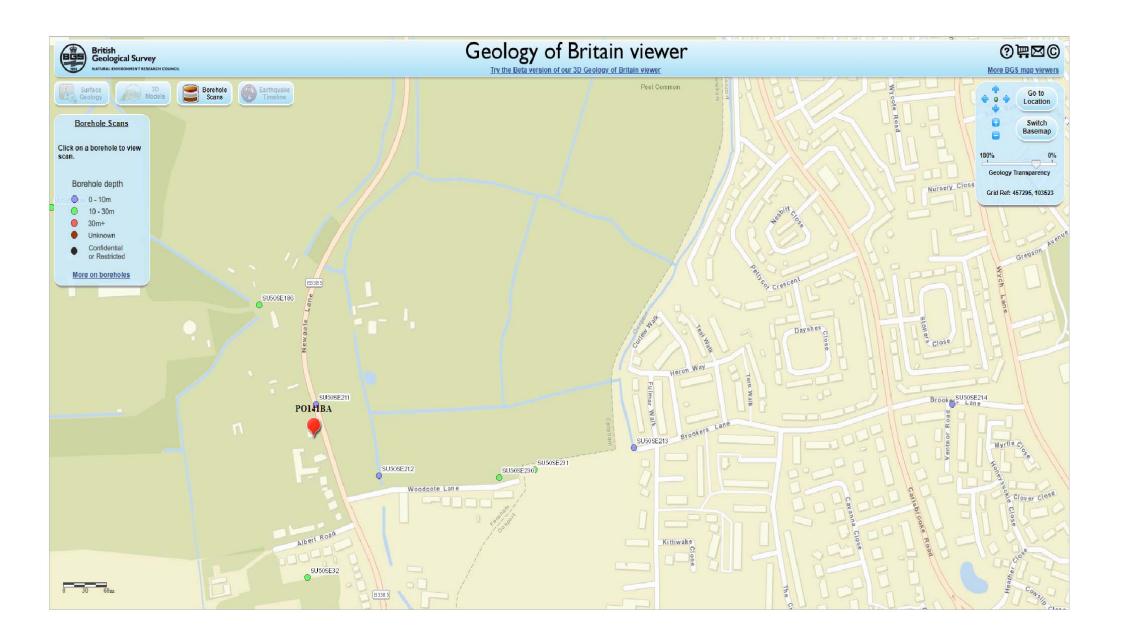
Appendix 1 Site Location Plan Appendix 2 Existing Site Layout Plan Appendix 3 Sewer Records Appendix 4 **BGS** Geological Borehole Data Appendix 5 Environment Agency Product 4 Information and Flood Maps Appendix 6 Existing Flow Path Plan Appendix 7 Illustrative Master Plan Appendix 8 Preliminary Surface Water Storage Calculations Appendix 9 Outline Drainage Maintenance Schedule

Appendix 1
Site Location Plan



# Appendix 2 Existing Site Layout Plan




Appendix 3

**Sewer Records** 



8.947 7.669 7.001 5.692 5.595 5.461 5.415 7.149 7.482 3.266 3.298 7.242 7.078 9.512 8.848 4.29 4.572 3.991 3.686 3.919 3.805 3.72 3.735 5.647 6.71 6.71 6.71 6.71 9.14 9.14 9.04 9.09 9.0059 9.0059 9.0059 9.0059 9.0059 9.0059 9.0059 9.957 9.966 9.936 10.052 10.038 7.98 7.932 1.031 1.336 1.799 1.799 1.112 1.356 1.986 1.986 1.582 1.608 10.367 10.464 10.189 10.159 10.182 10.388 9.148 10.424 9.17 1.701 1.656 1.784 1.779 1.775 1.672 1.775 1.665 761100 7651100 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 77701282 777012 8.688 8.193 7.616 7.584 7.326 7.761 7.636 9.2 5.901 6.006 8.36 6.161 5.878 7.884 1.994 1.93 1.902 1.902 1.902 1.911 1.911 1.911 1.911 1.911 1.911 5.598 5.415 7.033 7.076 7.574 7.305 8.428 8.428 7.395 7.798 7.325 7.725 7.737 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 7.548 3.79 7.176 8.52 7.798 8.82 9.248 7.962 8.432 5.722 5.98 5.508 9.472 8.321 8.416 9.82 8.311 9.886 8.47 3.908 0.2 3.301 3.39 0.057 0.057 3.567 3.834 0.483 0.483 3.64 0.261 3.609 0.243 1.598 1.773 1.636 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 8.721 8.518 8.685 8.793 8.638 8.616 0.445 3.411 3.628 3.558 3.558 9.087 3.095 3.004 3.564 3.915 3.915 3.644 3.778 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 3.693 .34 .838 .61 .718 .718 9.612 8.034 7.782 7.75 7.904 7.768 1355 X 13 7.872 3.82 3.94 4.5 7.629 7.383 7.15 8.236 7.897 7.661 3.22 3.498 3.09 3.346 5.077 5.077 5.05 5.936 5.726 5.62 3.833 3.675 3.675 3.825 7.363 7.901 7.683 7.52 7.755 8.633 8.633 8.434 8.221 7.361 7.361 8.575 8.575 7.361 7.361 7.361 7.361 3.711 3.441 7.871 5.94 6.72 6.91 6.91 7.72 7.72 7.75 9.532 9.333 9.555 9.894 8.881 9.58 9.326 9.769 9.492 9.643 9.643 8.106 8.016 8.35 8.112 8.048 8.048 7.565 8.335 9.965 9.965 8.22 8.188 10.18 10.16 6.227 9.403 9.153 9.153 9.254 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 35011 36011 36011 36011 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 360012 36

# Appendix 4 BGS Geological Borehole Data



| H                                                                                                           | olst Soil En                                                                       | gineer                                                             | ing                     | Limit                          | ed                        |                 | hole No.                                |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------|--------------------------------|---------------------------|-----------------|-----------------------------------------|
| British Geologica Contract No. F3523 Gosport                                                                |                                                                                    | •                                                                  | _                       |                                | n Geological Survey       | a               | h2                                      |
| Location                                                                                                    |                                                                                    |                                                                    |                         |                                | of <u>1</u>               |                 |                                         |
| ClientSouthern Wat Method of Boring                                                                         | cussion                                                                            | OSE '                                                              | 212                     |                                | evel                      |                 |                                         |
| Diameter of Borehole1                                                                                       | 50mm 571                                                                           | 0,030                                                              | B                       |                                | 12.76                     |                 |                                         |
| Description                                                                                                 |                                                                                    | Legend Depth<br>Below<br>G.L.(m                                    | Level                   | Casing<br>Depth at<br>Sampling | Sampling<br>and<br>Coring | "N"/<br>R.Q.D.% | Daily<br>Progress                       |
| TOPSOTI, Geological Survey                                                                                  | В                                                                                  | itish Geologi 👩 S 3 👩                                              |                         |                                |                           | Geological S    | urvey                                   |
| Firm grey brown mote<br>SILT with some flint                                                                | eled clayay sandy<br>gravel                                                        | * * * * *<br>* * * *<br>* * * *<br>* * * * *<br>* * * * * 1.10     |                         |                                |                           |                 |                                         |
| Medium dense silty s<br>GRAVEL in a clayey m                                                                |                                                                                    | 20:0<br>0:0:0                                                      |                         |                                |                           |                 |                                         |
| British Geolopical Survey                                                                                   | British Geological Surve                                                           |                                                                    |                         | Brish                          | Geological Survey         | "15"            | 1                                       |
| **************************************                                                                      | AL AND 1111 / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                      | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 |                         | 02                             | c                         |                 |                                         |
| Firm grey and orange silty Clar with occ                                                                    |                                                                                    | La rrosalian cal Survey                                            | ,                       |                                | 3.50<br>British           | Geological \$   | urvey                                   |
| fragments.                                                                                                  |                                                                                    | * * * * * * * * * * * * * * * * * * *                              |                         | o                              |                           |                 | 1,11,11,11,11,11,11,11,11,11,11,11,11,1 |
| British Geological Survey                                                                                   | British Geological Surve                                                           | <b>¥</b> .∞                                                        |                         | Br ម៉ូនុំ<br><b>១</b>          | Geological Survey         |                 | 1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| British Geological Survey                                                                                   | B                                                                                  | tish Geological Survey                                             |                         |                                | British                   | Geological \$   | Survey                                  |
| British Geological Survey                                                                                   | British Geological Surve                                                           |                                                                    |                         | British                        | Geological Survey         |                 | 1                                       |
|                                                                                                             | Remarks (Observations of G                                                         | round Water etc                                                    | .)                      | 4 L.i                          |                           |                 | -                                       |
| Type of Sample  Is S.P.T. ☐ Undisturbed British Geological Survey  Ic. C.P.T. × Vane  O Jar △ Water  ■ Bulk | Groundwater struck<br>Sealed by casing a<br>Standpipe install<br>Standing water le | k at 1.10m<br>at 3.50m de<br>ed <b>a</b> o 4.00m                   | depth c<br>pth<br>depth |                                |                           | Geological S    | Survey                                  |

5050SE 230

| Sampling Properties |                           |              |                          |                  |       | Strata    |                                                           |        |                          |             |               |          |  |
|---------------------|---------------------------|--------------|--------------------------|------------------|-------|-----------|-----------------------------------------------------------|--------|--------------------------|-------------|---------------|----------|--|
| Deg                 | oth                       | Туре         | Strength<br>kN/m²        | w<br>%           | SPT   | Descript  | ion                                                       |        | Depth                    | Level       | Legend        | 1        |  |
| =                   |                           |              | NIA, III                 | , o              |       | Topso     |                                                           |        | G.L                      | 8.4         | 77.           |          |  |
| -                   |                           |              |                          |                  |       | Topso     |                                                           |        | 0.4                      | 8.0         | $//\Delta$    |          |  |
| _                   | 0.5-1.0                   | <b>ΰ(50)</b> |                          |                  |       |           |                                                           |        | F                        |             |               |          |  |
| Ξ                   |                           | _            |                          |                  |       |           | stiff brown sandy CLAY with abundate and flint fragments. | nt     | E                        |             | ==            |          |  |
| =                   | 1.0                       | D            |                          |                  |       | V. alk    | -                                                         |        | Ē                        |             |               |          |  |
| _                   | 1.5–2.0                   | υ(20)        | ical Survey<br><b>95</b> | 22               |       |           | British Geological Survey                                 |        | Ε.                       | В           | USD GEOLO     | gical Si |  |
| =                   | 1.5-2.0                   | 0(20)        | 77                       | 22               |       |           |                                                           |        | 1.7                      | 6.7         | =             |          |  |
| _                   | 2.0                       | D            |                          | 22               |       | Firm-     | stiff light brown mottled grey ver                        | y      | E                        |             |               |          |  |
| _                   | -                         |              |                          |                  |       | silty     | CLAY.                                                     |        | Ė                        |             | ==            | P        |  |
| _                   | 2.4<br>2.5–3.0            | ₩<br>Ū(12)   | 120                      | 2 <b>2</b><br>22 |       |           |                                                           |        | <u> </u>                 |             | 三三            |          |  |
| Ξ                   | 20,700                    | 3(1.2)       | .20                      | 22               |       |           |                                                           |        | 2.7                      | 5.7         |               |          |  |
| h-Sed               | ologi <b>3.∗Q</b> urvey   | D            |                          |                  |       | Piru-     | stiff dark grey very silty sandy C                        | LAY    | mush Geolo               | gical Surve |               |          |  |
| -                   |                           |              |                          |                  |       |           | ing very sandy towards base.                              |        | E                        |             |               |          |  |
| _                   | 3.5-4.0                   | บ(10)        | 75                       | 18               |       |           |                                                           |        | F                        |             |               |          |  |
| -                   |                           |              |                          |                  |       |           |                                                           |        | E                        |             |               |          |  |
| _                   | 4.0                       | D            |                          |                  |       |           |                                                           |        | =                        |             |               |          |  |
| -                   |                           |              |                          |                  |       |           |                                                           |        | E                        |             |               | $\nabla$ |  |
| _                   | 4.5                       | D            |                          | 28               |       |           |                                                           |        | 4.5                      | 3.9         |               | Y        |  |
| _                   |                           |              | cal Survey               |                  |       |           | British Geological Survey                                 |        | F                        | В           | tish Geolo    | gical S  |  |
| -                   | 5.0-5.5                   | D.S          |                          |                  | 14    | Dones     | /very dense dark grey clayey very                         | oiltv  | =                        |             |               |          |  |
| -                   |                           |              |                          |                  |       | SAND.     |                                                           | 21103  | F                        |             |               |          |  |
| -                   |                           |              |                          |                  |       |           |                                                           |        | F                        |             |               |          |  |
| _                   | 6.0-6.5                   | υ(20)        | 22                       | 26               |       |           |                                                           |        | E.                       |             |               |          |  |
| -                   |                           | ,            |                          |                  |       | 01.6      |                                                           |        | Ė                        |             |               |          |  |
| _                   | 6.5                       | D            |                          |                  |       |           | grey fissured silty CLAY present  0.0. edlogical Survey   |        | Ē                        | 1           |               |          |  |
| -Geo                | 6.5<br>6.5 7.0°           | D.S          |                          |                  | 39    | British G | eological Survey                                          |        | <del>⊩it</del> ish Geolo | g cal Surve | :::::         |          |  |
| _                   |                           |              |                          |                  |       |           |                                                           |        | <u> </u>                 |             |               |          |  |
| -                   |                           |              |                          |                  |       |           |                                                           |        | E                        |             | :: ::         |          |  |
| _                   | 7-5                       | D            | 1                        |                  |       |           |                                                           |        | <u>-</u>                 |             |               |          |  |
|                     |                           |              |                          |                  |       |           |                                                           |        | Ē                        |             |               |          |  |
| _                   | 8.0-8.5                   | D.S          |                          | 65               |       |           | •                                                         |        | E                        |             |               |          |  |
| _                   | Brit                      | sh Geolog    | cal Survey               |                  |       |           | British Geological Survey                                 |        | Ē                        | В           | ntish Geolo   | ical S   |  |
| -                   |                           |              |                          |                  |       |           |                                                           |        | E                        | İ           |               |          |  |
| _                   | 9.0                       | D            |                          | 00               |       |           |                                                           |        | Ē.                       |             |               |          |  |
| =                   |                           | Б            |                          | 26<br>26<br>24   |       |           |                                                           |        | Ē                        |             |               |          |  |
| _                   | 9.3-9.8                   |              | 85                       | 24               |       |           |                                                           |        | E                        |             |               |          |  |
| _                   | 9.8-10.3                  | D.S          |                          |                  | 74    |           |                                                           |        | E                        |             | =-            |          |  |
| -                   | y.u-10.5                  | D.3          |                          |                  | /4    | Conti     | nued from 10.0.                                           |        | E 10.                    | -1.6        |               |          |  |
| Dr                  | ological Survey<br>illing |              |                          | ·                |       | Grou      | eological Survey<br>nd Water                              | E      | British Geolo            | gical Surve | У             |          |  |
| Тур                 | e                         | From         | То                       |                  | Fluid | Struck    | Behaviour                                                 | Sealed | Date                     | Hole        | Cased         | Wa       |  |
|                     | ell and                   | G.L          | 10.0                     | 0.15             |       | 4.50      | Rose to 2.4 in 1 hour                                     | -      | 2.9.75                   | <u> </u>    | -             |          |  |
| Αυ                  | ge <b>r</b> .             |              |                          |                  |       |           | Ingress throughout borehole.                              |        | 2.9.75                   | 15.0        | 14.0          | 14.      |  |
|                     |                           |              | <u> </u>                 |                  |       |           |                                                           |        | 12.9.75                  | Piezo       | eter          | 1.6      |  |
| Re                  | marks                     | ish Geolog   | ical Survey              |                  |       |           | British Geological Survey                                 |        |                          |             | ritish Geolog | o lenir  |  |
| В                   | rehol                     |              |                          |                  |       | Proje     | <b></b>                                                   |        | Contrac                  | ct          |               | ,,vdl Q  |  |
|                     |                           |              |                          |                  |       |           | Hampshire County Council<br>Fareham - Gosport Relief Ro   | ad     |                          |             | 1259/4        |          |  |
|                     | xploration associates     |              |                          | _                |       |           |                                                           | Bore   | nole                     | 37          |               |          |  |

# 3050sé 230

|                     |                      |                           |        |                                                        | Strata                                                                                                              |        | British Cooledies Course        |                       |                     |                      |
|---------------------|----------------------|---------------------------|--------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------|---------------------------------|-----------------------|---------------------|----------------------|
| Depth               | Туре                 | Strength<br>kN/m²         | w<br>% | SPT                                                    | Emish Geological Survey  Description                                                                                |        | Depth                           | Level                 | Legend              | I                    |
| -                   |                      | KNAIII                    | 7.5    |                                                        | Continued from 10.0.                                                                                                |        | 10.0                            | -1.6                  |                     |                      |
| 10.8                |                      | 1                         | 25     |                                                        | Dense/very dense dark grey mottled light<br>grey green clayey very silty SAND tendin<br>to very sandy SALT, in part |        | <b></b>                         |                       |                     |                      |
| 11.5-12.0           |                      | ical Survey               |        | 90                                                     | British अंग्लान Survey                                                                                              |        |                                 | В                     | tism escape         | gical Su             |
| 12.5                | D                    |                           |        |                                                        |                                                                                                                     |        | <u> </u>                        |                       |                     |                      |
|                     | <b>п(30)</b>         |                           | 23     |                                                        | British Geological Survey                                                                                           |        | wiish Geolog                    | ical Survey           |                     |                      |
| 14.3<br>14.5–15.0   | sh Geolog            | <b>150</b><br>gcal Survey | 25     |                                                        | British Geological Survey                                                                                           |        |                                 | Br                    | lish lakejo         | ,<br>jical Si        |
| 15.0                | D                    |                           |        |                                                        | End of Borehole.                                                                                                    |        | 15.0                            | -6.6                  |                     |                      |
| m Geological Survey | sh Geolog            | J cal Survey              |        |                                                        | British Geological Survey<br>,<br>British Geological Survey                                                         |        | illish Geolog                   |                       | ijsh Geolog         | ical S               |
| Drilling            |                      |                           |        |                                                        | Ground Water                                                                                                        | ,      | British Geolog                  | jical Survey          | γ                   |                      |
| Туре                | From                 | То                        | Size   | Fluid                                                  | Struck Behaviour                                                                                                    | Sealed | <del></del>                     | Hole                  | Cased               | -                    |
| Shell and Auger.    | 10.0                 | 15.0                      |        |                                                        |                                                                                                                     |        | 31.10.75<br>30.12.75<br>29.1.76 | Piezo                 | 1                   | 0.9                  |
| Remarks             |                      | Piezomete:                | r ins  | talled                                                 | to 15.0.                                                                                                            | 1      | 1-7                             | 1 - 2000              | T                   |                      |
| Borehol             | sh Genlar<br>B Re    | ord                       |        |                                                        | Project Hamphire County Council                                                                                     |        | Contrac                         | t<br>S <sub>125</sub> | ilioh Goolog<br>9/4 | jisal <del>S</del> t |
|                     |                      |                           |        | Hampshire County Council Fareham - Gosport Relief Road | ı                                                                                                                   | Borel  |                                 |                       |                     |                      |
| explorat            | pioration associates |                           | \$     |                                                        |                                                                                                                     | Sheet  |                                 | 37<br>2               |                     |                      |

## 5050st 231

| \$an     | npling                              |                            | Prope             | rties  | •     | Strati                         | and a size of Ourseau or an artist of the Course of the Co |        |                 |               |                                |                |
|----------|-------------------------------------|----------------------------|-------------------|--------|-------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|---------------|--------------------------------|----------------|
| Depti    | <del>jival Sarvey</del><br><b>h</b> | Туре                       | Strength<br>kN/m² | w<br>% | SPT   | Descript                       | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | Depth           | Level         | Legend                         | đ              |
| _        |                                     |                            |                   |        |       | Topso                          | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | G.              | 8.4           | 777                            |                |
| Ξ,       | 1.5-1.0                             | U(20)                      |                   |        |       | Topac                          | 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | E 0.            | 8.0           | $// \Delta$                    |                |
| -        | .,                                  | 0(20)                      |                   |        |       | Catt                           | 61— 11-bi been becaring brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | E               |               |                                |                |
| _        | 1.0                                 | D                          | 1                 |        |       |                                | <ul> <li>firm light brown becoming brown<br/>sandy CLAY with abundant gravel to</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | E.              |               | ===                            |                |
| =        |                                     |                            | cal Survey        |        |       | base.<br>in un                 | Carbonaceous inclusions present<br>British Geological Survey<br>per regions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t      | Ē               | Br            | rich Geolog                    | cal Sur        |
| 1        | .5-2.0                              | ਧ(38)                      | 45                | 19     |       |                                | , <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | E               |               |                                |                |
|          | 2.0                                 | D                          |                   | ļ      |       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | E               |               | ==                             |                |
| _        | 2.2                                 | v                          |                   |        |       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 2.              | 3 6.1         | ;                              |                |
|          | .5-3.0                              | U(15)                      | 140               | 25     |       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                 |               |                                | $\perp \nabla$ |
| =        |                                     | _                          |                   |        |       |                                | m dense/dense light brown slightly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | E               |               |                                |                |
| n Geolog | gic <b>3. 9</b> urvey               | D                          |                   |        |       | claye                          | y sandy SILT with silty SAND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | В      | ritish Geol     | ogical Survey |                                |                |
| <u> </u> | .5-4.0                              | D.S                        |                   |        | 14    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | E               |               |                                |                |
| = '      |                                     |                            | 1                 |        |       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | =               |               |                                |                |
| _        |                                     |                            |                   |        |       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | -               |               |                                |                |
| = ,      | .5-5.0                              | D.S                        |                   |        | 18    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Ē               |               | (6 ± (4))                      |                |
| = "      |                                     |                            |                   |        | 10    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | F               |               |                                |                |
| _        |                                     | sh Geolog                  | cal Survey        |        |       | <u> </u>                       | British Geological Survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | <u> </u>        | 3.4           | irsh-Statis                    | cal Sui        |
| =        |                                     |                            |                   |        |       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | E               |               |                                |                |
| _ 5      | .5-6.0                              | D.S                        | 1                 | 22     | 35    | Dense                          | /very dense grey clayey very silty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | <u> </u>        |               |                                |                |
| _        |                                     |                            |                   |        |       | S.A.ND                         | with occasional laminated clay zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | es.    | E               |               |                                |                |
| _        |                                     |                            |                   |        |       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Ē               |               |                                |                |
| 6.       | -5-7.0                              | D.S                        |                   |        | 40    | British G                      | eological Survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | -<br>ewish Gani | ogical Survey |                                |                |
|          | groun ourroy                        |                            |                   |        |       | Dillion                        | oological carry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,      | E               | 9041 04170)   |                                |                |
| =        |                                     |                            |                   |        |       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Ē               |               |                                |                |
| _ 7      | 7•3<br>•5–8•0                       | D<br>U(30)                 | 290               | 20     |       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | =               |               |                                |                |
| _        |                                     |                            |                   |        |       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Ē               |               |                                |                |
| 8        | .0-8.5                              | D.S                        |                   |        | 34    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | <del>-</del>    |               |                                |                |
| =        | Briti                               | sh Geolog                  | cal Survey        |        |       |                                | British Geological Survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | E               | Br            | itsh Gedlog                    | cal Sur        |
| _        |                                     |                            |                   |        |       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                 |               |                                |                |
|          |                                     |                            | 1                 |        |       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | <u>-</u>        |               |                                |                |
| =        |                                     |                            |                   |        |       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Ē               |               | 4                              |                |
| 9.<br>_  | .5–10.0                             | D.S                        |                   | 17     | 43    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                 |               |                                |                |
|          |                                     |                            |                   |        |       | Conti                          | nued from 10.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                 | .0 -1.6       |                                |                |
| Dril     | ical Survey<br>ling                 |                            |                   |        |       | Groun                          | eological Survey<br>1 <b>d Water</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В      | British Geo     | ogical Survey |                                | L.—            |
| Туре     |                                     | From                       | То                | Size   | Fluid | Struck                         | Behaviour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sealed | Date            | Hole          | Cased                          | Wat            |
|          | l and                               | G.L                        | 10.0              | 0.15   |       | 2.50                           | Medium ingress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 3.9.7           | <u> </u>      | _                              |                |
| Auger    | r.                                  |                            |                   |        |       |                                | Ingress throughout borehole.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                 |               |                                |                |
| Ren      | narks                               | -1- 6 - :                  | L                 | L      |       |                                | Date of the control of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                 |               | L                              |                |
| Bor      | rehole                              | sh Geolog<br>B <b>Re</b> ( |                   |        |       | Proje                          | British Geological Survey  Ct Hampshire County Council                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | Contra          | ct            | <u>itish Geologi</u><br>1259/4 | ical Sui       |
|          |                                     |                            |                   |        |       | Fareham - Gosport Relief Road. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bore   | hole            | 38            |                                |                |
| ext      | xploration associates               |                            |                   | 8      |       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 1 of            | 38<br>2       |                                |                |

30 5052231

| 1 1                                  |                        | Prope        | rties          | •     | Strata        |                                                                     |        |                |                                                  |                                                  |                     |
|--------------------------------------|------------------------|--------------|----------------|-------|---------------|---------------------------------------------------------------------|--------|----------------|--------------------------------------------------|--------------------------------------------------|---------------------|
| sh Geological Survey<br><b>Depth</b> | Type                   | Strength     | w              | SPT   | Descrip       | Seological Survey<br>Ion                                            |        | Depth          | Level                                            | Legend                                           | l                   |
|                                      | -                      | kN/m²        | *              | . ~   | Conti         | nued from 10,0,                                                     |        | 10.0           | -1.6                                             |                                                  |                     |
| 10.3                                 | D                      | ĺ            |                |       |               |                                                                     |        | =              |                                                  |                                                  |                     |
| 10.5-11.0                            | U(25)                  | 200          | 20             |       |               |                                                                     |        |                |                                                  |                                                  |                     |
| E                                    |                        | l            | 21<br>20       |       | Very          | stiff dark grey mottled grey with                                   |        |                |                                                  |                                                  |                     |
| 11.0                                 | D                      |              |                |       |               | ional light grey veins very silty                                   |        | ılı            |                                                  |                                                  |                     |
|                                      | ish Geolo              | gical Survey |                |       | sandy<br>sand | CLAY, tending to clayey silt and in part. British Geological Survey |        | E              | Br                                               |                                                  | gical Surv          |
| 11.5                                 | D                      |              | 20             |       |               |                                                                     |        |                |                                                  | ==                                               |                     |
| E                                    | m/or1                  |              |                |       |               |                                                                     |        |                |                                                  | x                                                |                     |
| 12.0-12.5                            | <b>U(25)</b>           |              |                |       |               |                                                                     |        | Lii            |                                                  |                                                  |                     |
| 12,5                                 | D                      |              |                |       |               |                                                                     |        | Ε.             |                                                  |                                                  |                     |
| = ".,                                |                        |              |                |       |               |                                                                     |        |                |                                                  | ×_                                               |                     |
| 13.0<br>Lsb Geological Survey        | D                      |              |                |       |               |                                                                     |        |                |                                                  |                                                  |                     |
| sb Geological Survey                 |                        | 1            |                |       | British       | Geological Survey                                                   | ı      | witish Geolog  | cal Survey                                       | ===                                              |                     |
| E 13.5-14.0                          | <b>U(35)</b>           | 240          | 25             |       |               |                                                                     |        | L              |                                                  |                                                  |                     |
| E                                    |                        |              |                |       |               |                                                                     |        |                |                                                  |                                                  |                     |
| 14.0                                 | D                      | 1            |                |       |               |                                                                     |        |                |                                                  |                                                  |                     |
|                                      |                        |              |                |       | ]             |                                                                     |        |                |                                                  |                                                  |                     |
| 14.5-15.0                            | v(35)                  | 300          | 23<br>23       |       |               |                                                                     |        | _              |                                                  |                                                  |                     |
| E . Br                               | ii <u>s</u> h Geolo    | ical Survey  | 23             |       |               | British Geological Survey                                           |        | Ε              | Bi                                               | tiek Geelo                                       | gical Surv          |
| 15.0                                 | D                      |              |                |       | End o         | f Borehole.                                                         |        | 15.0           | -6.6                                             |                                                  |                     |
| =                                    |                        |              |                |       |               |                                                                     |        |                |                                                  |                                                  |                     |
| Ξ                                    |                        |              |                |       |               |                                                                     |        |                |                                                  |                                                  |                     |
| E_                                   |                        |              |                |       |               |                                                                     |        | _              |                                                  |                                                  |                     |
| E                                    |                        |              |                |       |               |                                                                     |        |                | İ                                                |                                                  |                     |
| -                                    |                        |              |                |       | Ì             |                                                                     |        |                |                                                  |                                                  |                     |
| ish Geological Survey                |                        |              |                |       | British       | Geological Survey                                                   | ı      | tritish Geolog | ical Survey                                      |                                                  |                     |
| F .                                  |                        |              |                |       |               |                                                                     |        |                |                                                  |                                                  |                     |
| E                                    |                        |              |                |       |               |                                                                     |        | E              |                                                  |                                                  |                     |
| =                                    |                        |              |                |       |               |                                                                     |        | =              |                                                  | 1                                                |                     |
| E                                    |                        |              |                |       |               |                                                                     |        | Ē              |                                                  |                                                  |                     |
| E                                    |                        |              |                |       |               | •                                                                   |        | Ė              |                                                  |                                                  |                     |
| E Br                                 | ish Geolo              | ical Survey  |                |       |               | British Geological Survey                                           |        | _              | Br                                               | tish Geolo                                       | gical Surv          |
| -                                    |                        |              |                |       |               |                                                                     |        | E              |                                                  |                                                  |                     |
| E_                                   |                        |              |                |       |               |                                                                     |        | E              |                                                  |                                                  |                     |
| E                                    |                        |              |                |       |               |                                                                     |        | E              |                                                  |                                                  |                     |
|                                      |                        |              |                |       |               |                                                                     |        | =              |                                                  |                                                  |                     |
| Ė                                    |                        |              | ĺ              |       |               |                                                                     |        |                |                                                  |                                                  |                     |
| _                                    | L                      |              |                |       |               |                                                                     |        |                |                                                  |                                                  |                     |
| s Drilling III                       | _                      |              | · · · · ·      |       |               | nd Water                                                            |        | British Geolog |                                                  |                                                  |                     |
| Туре                                 | From                   | To           | <del> </del> - | Fluid | Struck        | Behaviour                                                           | Sealed | Date           | Hole                                             | Cased                                            | Water               |
| Shell and Auger.                     | 10.0                   | 15.0         | 0.15           |       |               |                                                                     | -      |                |                                                  | <del>                                     </del> |                     |
|                                      |                        |              |                |       |               |                                                                     |        |                | <del>                                     </del> |                                                  |                     |
| Remarks                              |                        | -110         |                |       |               | Data Control                                                        |        |                | _                                                |                                                  | -:10                |
| Borehol                              | e Re                   | cord         |                |       | Proje         |                                                                     | _      | Contrac        | t S12                                            | 59 <b>/4</b>                                     | <del>yeal-bun</del> |
|                                      |                        |              | _4-            |       |               | Fareham - Gosport Relief Road                                       | i      | Boret          | ole                                              | 38                                               |                     |
| i explorat                           | exploration associates |              |                |       |               |                                                                     |        | Sheet          |                                                  | 2                                                |                     |

# Appendix 5 Environment Agency Product 4 Information and Flood Maps



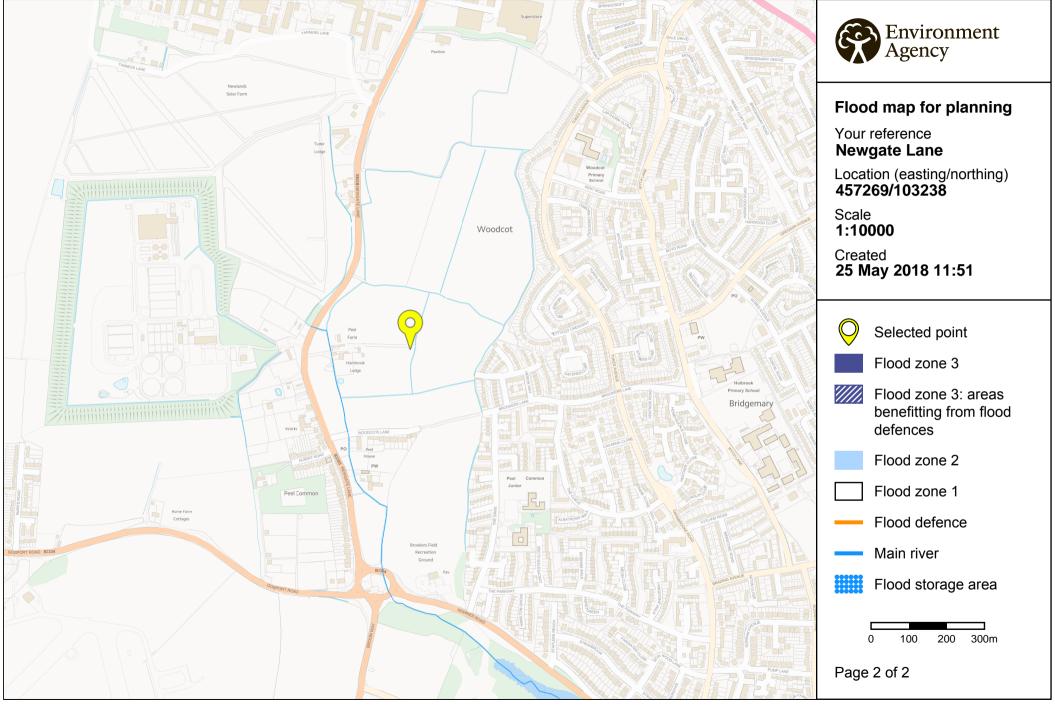
# Flood map for planning

Your reference Location (easting/northing) Created

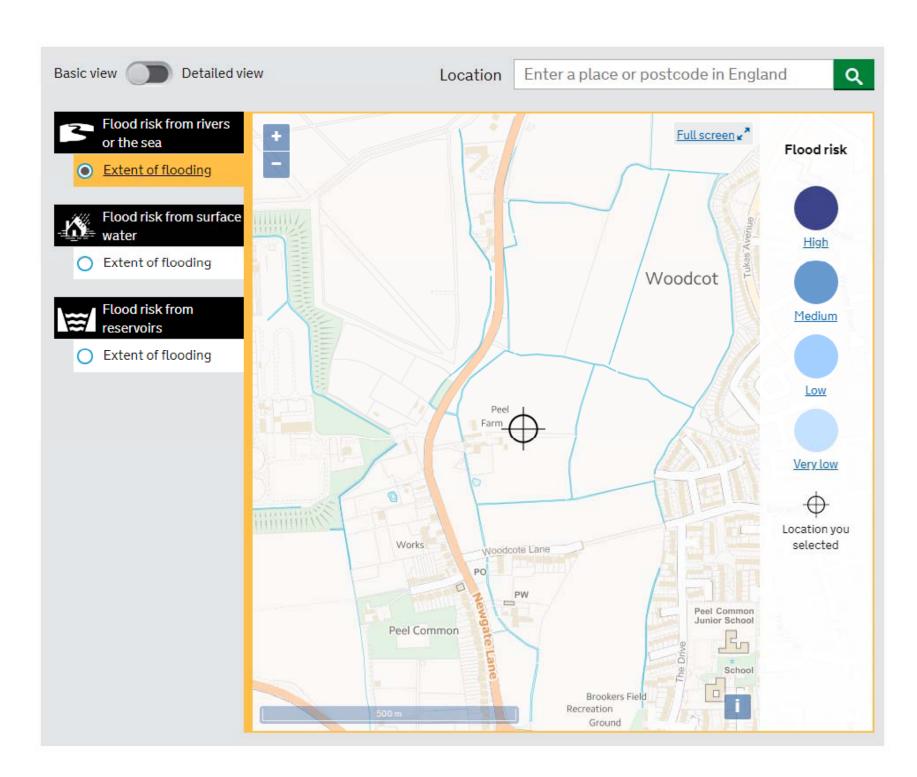
Newgate Lane 457269/103238 25 May 2018 11:51

Your selected location is in flood zone 1, an area with a low probability of flooding.

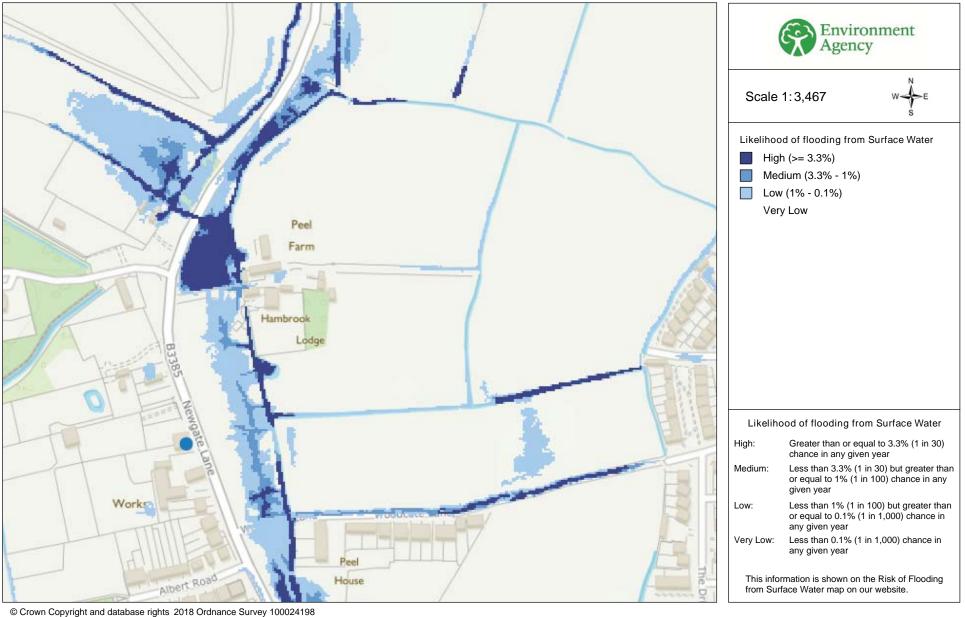
#### This means:

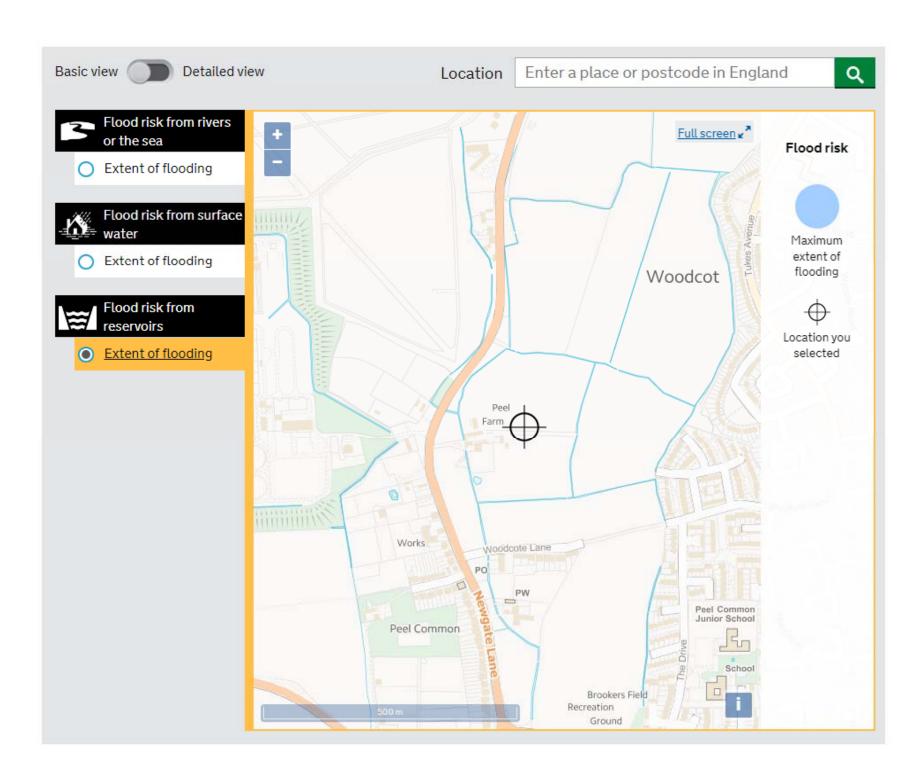

- you don't need to do a flood risk assessment if your development is smaller than 1
  hectare and not affected by other sources of flooding
- you may need to do a flood risk assessment if your development is larger than 1
  hectare or affected by other sources of flooding or in an area with critical drainage
  problems

#### **Notes**


The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.


The Open Government Licence sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/




© Environment Agency copyright and / or database rights 2018. All rights reserved. © Crown Copyright and database right 2018. Ordnance Survey licence number 100024198.

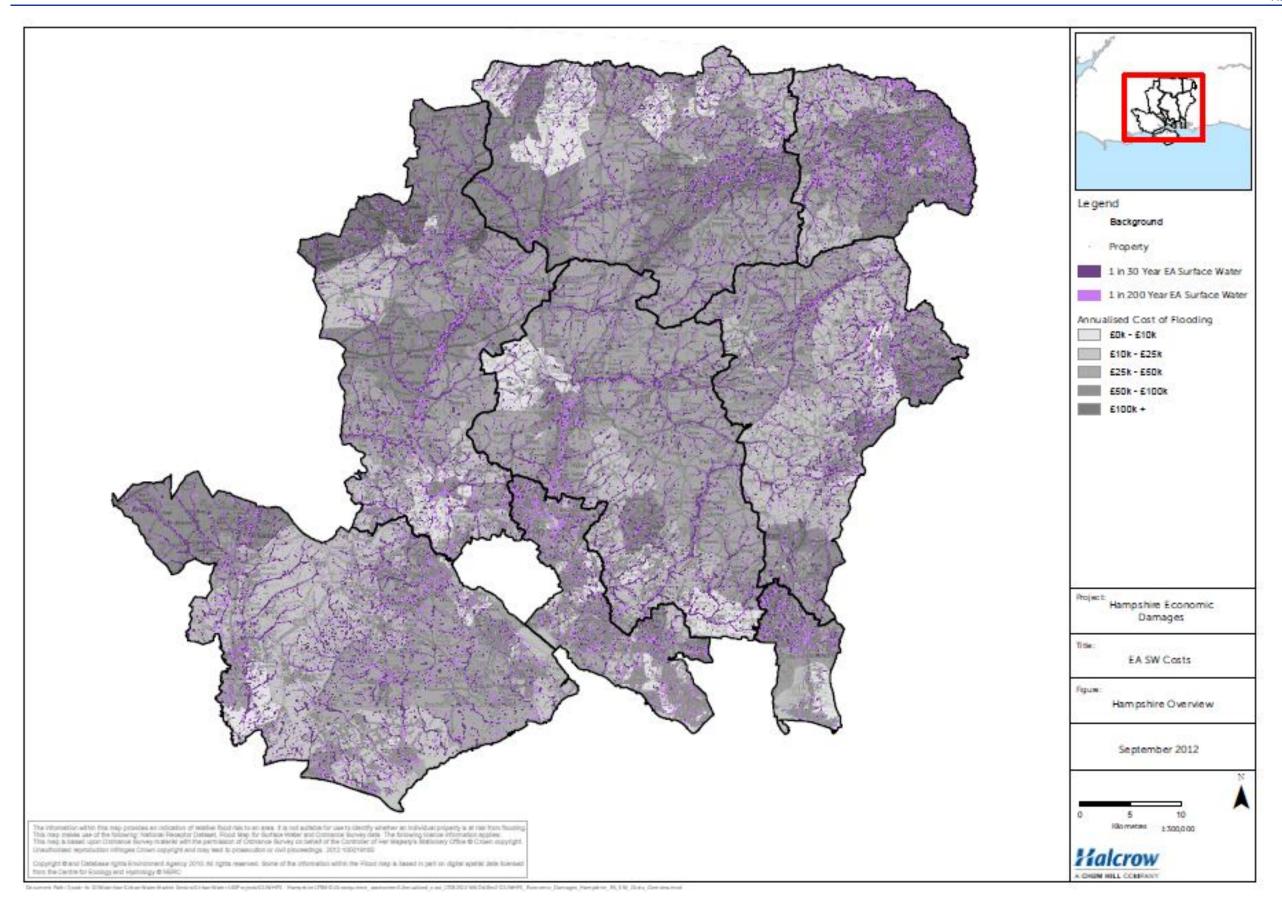
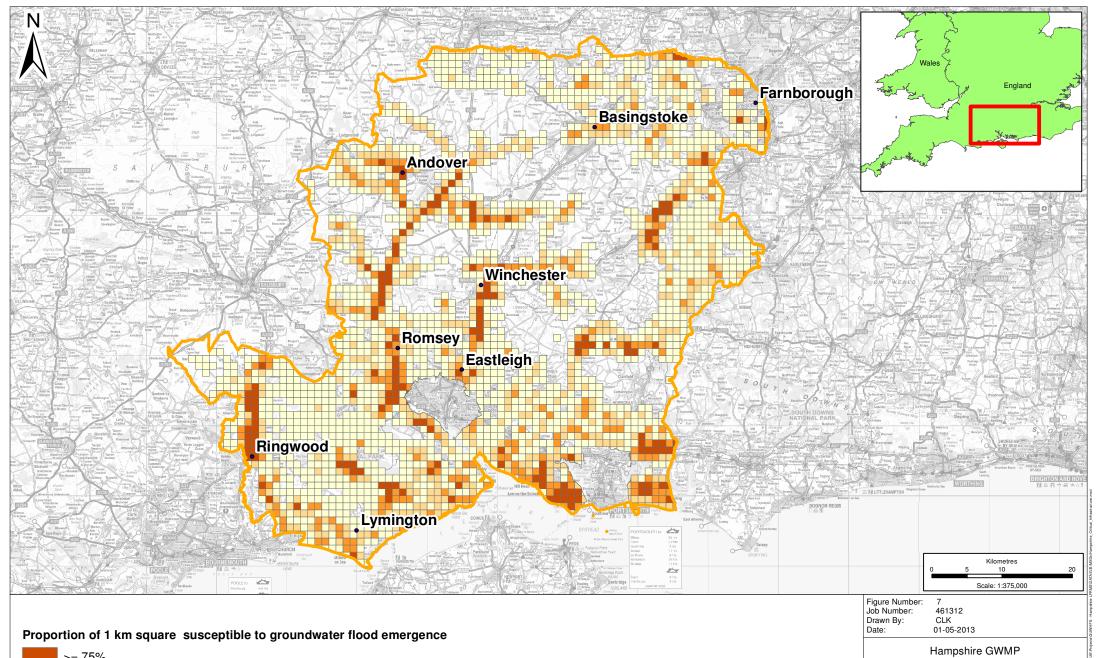


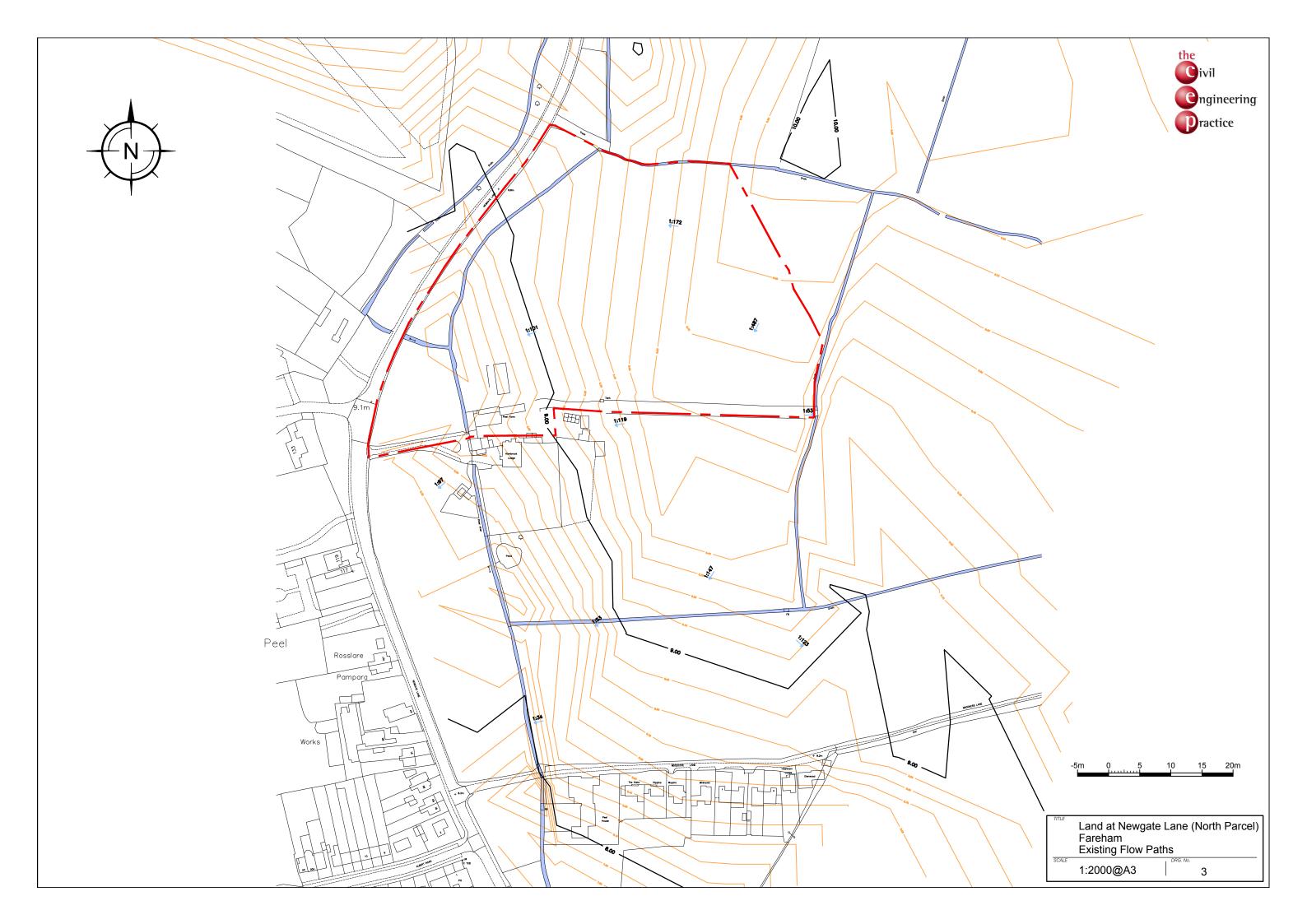
#### Risk of flooding from Surface Water - Newgate Lane, created 21 March 2018









Figure 4.3: Risk of flooding calculated as an economic cost from the Environment Agency Flood Map for Surface Water







# Appendix 6 Existing Flow Path Plan



### Appendix 7 Illustrative Master Plan





APPLICATION BOUNDARY



### Appendix 8

**Preliminary Surface Water Storage Calculations** 

| The Civil Engineering Practice |                                | Page 1   |
|--------------------------------|--------------------------------|----------|
| 11 Tungsten Building           | 23013                          |          |
| George Street                  | Land at Newgate Lane, Fareham  | ٧        |
| Fishersgate BN41 1RA           | North Site Preliminary Storage | Micro    |
| Date 06/09/2018                | Designed by SRD                |          |
| File Preliminary Storage (No   | Checked by                     | Drainage |
| XP Solutions                   | Source Control 2017.1.2        |          |

#### Summary of Results for 100 year Return Period (+40%)

|                              | Stor<br>Even      |                                                | Max<br>Level<br>(m)                       | Max<br>Depth<br>(m)                       | Max<br>Control<br>(1/s)  | Max<br>Volume<br>(m³)                     | Status                   |
|------------------------------|-------------------|------------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------|-------------------------------------------|--------------------------|
| 15<br>30<br>60<br>120<br>180 | min<br>min<br>min |                                                | 6.798<br>6.900<br>7.009<br>7.122<br>7.186 | 0.298<br>0.400<br>0.509<br>0.622<br>0.686 | 5.0<br>5.0<br>5.0<br>5.0 | 304.2<br>407.8<br>519.4<br>634.8<br>699.8 | 0 K<br>0 K<br>0 K<br>0 K |
| 480<br>600                   | min<br>min<br>min | Summer<br>Summer<br>Summer<br>Summer           | 7.227<br>7.281<br>7.316<br>7.338          | 0.727<br>0.781<br>0.816<br>0.838          | 5.0<br>5.0<br>5.0<br>5.0 | 741.3<br>796.5<br>831.8<br>855.1          | 0 K<br>0 K<br>0 K        |
| 960<br>1440<br>2160          | min<br>min<br>min | Summer<br>Summer<br>Summer                     | 7.353<br>7.368<br>7.365<br>7.341          | 0.853<br>0.868<br>0.865<br>0.841          | 5.0<br>5.0<br>5.0<br>5.0 | 870.4<br>885.8<br>882.7<br>858.1          | 0 K<br>0 K<br>0 K        |
| 4320                         | min<br>min<br>min | Summer<br>Summer<br>Summer<br>Summer           | 7.313<br>7.254<br>7.193<br>7.127<br>7.060 | 0.813<br>0.754<br>0.693<br>0.627<br>0.560 | 5.0<br>5.0<br>5.0<br>5.0 | 829.6<br>769.3<br>707.1<br>639.6<br>571.3 | 0 K<br>0 K<br>0 K<br>0 K |
| 10080<br>15<br>30            | min<br>min<br>min | Summer<br>Winter<br>Winter<br>Winter           | 7.002<br>6.835<br>6.949<br>7.072          | 0.502<br>0.335<br>0.449<br>0.572          | 5.0<br>5.0<br>5.0<br>5.0 | 511.9<br>341.3<br>457.6<br>583.4          | 0 K<br>0 K<br>0 K<br>0 K |
| 180<br>240<br>360            | min<br>min<br>min | Winter<br>Winter<br>Winter<br>Winter<br>Winter | 7.200<br>7.272<br>7.318<br>7.381<br>7.422 | 0.700<br>0.772<br>0.818<br>0.881<br>0.922 | 5.0<br>5.0<br>5.0<br>5.0 | 714.1<br>787.4<br>834.7<br>898.7<br>940.6 | 0 K<br>0 K<br>0 K<br>0 K |
| 720<br>960                   | min<br>min        | Winter<br>Winter<br>Winter<br>Winter           | 7.450<br>7.469<br>7.491<br>7.498          | 0.950<br>0.969<br>0.991<br>0.998          | 5.0<br>5.0<br>5.0<br>5.0 | 969.0<br>988.7<br>1011.0<br>1017.9        | O K<br>O K<br>O K        |

| Storm |      | Rain   | Flooded | Discharge | Time-Peak |        |  |
|-------|------|--------|---------|-----------|-----------|--------|--|
|       | Even | t      | (mm/hr) | Volume    | Volume    | (mins) |  |
|       |      |        |         | (m³)      | (m³)      |        |  |
|       |      |        |         |           |           |        |  |
| 15    | min  | Summer | 126.074 | 0.0       | 274.8     | 26     |  |
| 30    | min  | Summer | 84.745  | 0.0       | 360.8     | 41     |  |
| 60    | min  | Summer | 54.368  | 0.0       | 513.5     | 70     |  |
| 120   | min  | Summer | 33.674  | 0.0       | 631.7     | 130    |  |
| 180   | min  | Summer | 25.065  | 0.0       | 696.9     | 190    |  |
| 240   | min  | Summer | 20.180  | 0.0       | 736.3     | 250    |  |
| 360   | min  | Summer | 14.839  | 0.0       | 770.4     | 368    |  |
| 480   | min  | Summer | 11.923  | 0.0       | 767.5     | 486    |  |
| 600   | min  | Summer | 10.054  | 0.0       | 759.0     | 606    |  |
| 720   | min  | Summer | 8.741   | 0.0       | 749.9     | 724    |  |
| 960   | min  | Summer | 7.003   | 0.0       | 732.5     | 962    |  |
| 1440  | min  | Summer | 5.114   | 0.0       | 701.3     | 1402   |  |
| 2160  | min  | Summer | 3.727   | 0.0       | 1288.7    | 1736   |  |
| 2880  | min  | Summer | 2.973   | 0.0       | 1353.2    | 2116   |  |
| 4320  | min  | Summer | 2.159   | 0.0       | 1300.8    | 2944   |  |
| 5760  | min  | Summer | 1.718   | 0.0       | 1611.5    | 3800   |  |
| 7200  | min  | Summer | 1.438   | 0.0       | 1685.3    | 4616   |  |
| 8640  | min  | Summer | 1.245   | 0.0       | 1749.6    | 5360   |  |
| 10080 | min  | Summer | 1.102   | 0.0       | 1801.6    | 6056   |  |
| 15    | min  | Winter | 126.074 | 0.0       | 306.8     | 26     |  |
| 30    | min  | Winter | 84.745  | 0.0       | 392.0     | 41     |  |
|       |      | Winter | 54.368  | 0.0       | 574.0     | 70     |  |
| 120   | min  | Winter | 33.674  | 0.0       | 699.5     | 128    |  |
| 180   | min  | Winter | 25.065  | 0.0       | 759.0     | 186    |  |
| 240   | min  | Winter | 20.180  | 0.0       | 779.7     | 244    |  |
| 360   | min  | Winter | 14.839  | 0.0       | 776.6     | 362    |  |
| 480   | min  | Winter | 11.923  | 0.0       | 768.3     | 478    |  |
| 600   | min  | Winter | 10.054  | 0.0       | 760.6     | 594    |  |
| 720   | min  | Winter | 8.741   | 0.0       | 753.8     | 710    |  |
| 960   | min  | Winter | 7.003   | 0.0       | 742.3     | 938    |  |
| 1440  | min  | Winter | 5.114   | 0.0       | 726.0     | 1382   |  |

| The Civil Engineering Practice |                                | Page 2   |
|--------------------------------|--------------------------------|----------|
| 11 Tungsten Building           | 23013                          |          |
| George Street                  | Land at Newgate Lane, Fareham  |          |
| Fishersgate BN41 1RA           | North Site Preliminary Storage | Micro    |
| Date 06/09/2018                | Designed by SRD                | Drainage |
| File Preliminary Storage (No   | Checked by                     | Diamage  |
| XP Solutions                   | Source Control 2017.1.2        |          |

#### Summary of Results for 100 year Return Period (+40%)

|       | Stori<br>Even |        | Max<br>Level<br>(m) | Max<br>Depth<br>(m) | Max<br>Control<br>(1/s) | Max<br>Volume<br>(m³) | Status |
|-------|---------------|--------|---------------------|---------------------|-------------------------|-----------------------|--------|
| 2160  | min           | Winter | 7.467               | 0.967               | 5.0                     | 986.5                 | ОК     |
| 2880  | min           | Winter | 7.432               | 0.932               | 5.0                     | 950.7                 | O K    |
| 4320  | min           | Winter | 7.351               | 0.851               | 5.0                     | 868.0                 | O K    |
| 5760  | min           | Winter | 7.264               | 0.764               | 5.0                     | 778.9                 | O K    |
| 7200  | min           | Winter | 7.171               | 0.671               | 5.0                     | 684.7                 | O K    |
| 8640  | min           | Winter | 7.063               | 0.563               | 5.0                     | 574.4                 | O K    |
| 10080 | min           | Winter | 6.972               | 0.472               | 5.0                     | 481.7                 | ОК     |

| Stor<br>Even |        | Rain<br>(mm/hr) | Flooded<br>Volume<br>(m³) | Discharge<br>Volume<br>(m³) | Time-Peak<br>(mins) |
|--------------|--------|-----------------|---------------------------|-----------------------------|---------------------|
|              |        |                 |                           |                             |                     |
| 2160 min     | Winter | 3.727           | 0.0                       | 1429.2                      | 1972                |
| 2880 min     | Winter | 2.973           | 0.0                       | 1461.5                      | 2248                |
| 4320 min     | Winter | 2.159           | 0.0                       | 1349.8                      | 3164                |
| 5760 min     | Winter | 1.718           | 0.0                       | 1804.9                      | 4096                |
| 7200 min     | Winter | 1.438           | 0.0                       | 1887.4                      | 5040                |
| 8640 min     | Winter | 1.245           | 0.0                       | 1959.8                      | 5784                |
| 10080 min    | Winter | 1.102           | 0.0                       | 2020.1                      | 6456                |

| The Civil Engineering Practice |                                | Page 3   |
|--------------------------------|--------------------------------|----------|
| 11 Tungsten Building           | 23013                          |          |
| George Street                  | Land at Newgate Lane, Fareham  | ٧        |
| Fishersgate BN41 1RA           | North Site Preliminary Storage | Micro    |
| Date 06/09/2018                | Designed by SRD                | Drainage |
| File Preliminary Storage (No   | Checked by                     | nanaye   |
| XP Solutions                   | Source Control 2017.1.2        |          |

#### Rainfall Details

Rainfall Model FSR Ratio R 0.350 Cv (Winter) 0.840
Return Period (years) 100 Summer Storms Yes Shortest Storm (mins) 15
Region England and Wales Winter Storms Yes Longest Storm (mins) 10080
M5-60 (mm) 19.200 Cv (Summer) 0.750 Climate Change % +40

#### Time Area Diagram

Total Area (ha) 1.308

|   | (mins)<br>To: |       |   |   |       |   | (mins)<br>To: |       |
|---|---------------|-------|---|---|-------|---|---------------|-------|
| 0 | 4             | 0.436 | 4 | 8 | 0.436 | 8 | 12            | 0.436 |

| The Civil Engineering Practice |                                | Page 4    |
|--------------------------------|--------------------------------|-----------|
| 11 Tungsten Building           | 23013                          |           |
| George Street                  | Land at Newgate Lane, Fareham  | 4         |
| Fishersgate BN41 1RA           | North Site Preliminary Storage | Micro     |
| Date 06/09/2018                | Designed by SRD                | Drainage  |
| File Preliminary Storage (No   | Checked by                     | nialilade |
| XP Solutions                   | Source Control 2017.1.2        |           |

#### Model Details

Storage is Online Cover Level (m) 8.000

#### Tank or Pond Structure

Invert Level (m) 6.500

| Depth (m) | Area (m²) | Depth (m) | Area (m²) | Depth (m) | Area (m²) | Depth (m) | Area (m²) | Depth (m) | Area (m²) |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|           |           |           |           |           |           |           |           |           |           |
| 0.000     | 1020.0    | 0.600     | 1020.0    | 1.200     | 0.0       | 1.800     | 0.0       | 2.400     | 0.0       |
| 0.100     | 1020.0    | 0.700     | 1020.0    | 1.300     | 0.0       | 1.900     | 0.0       | 2.500     | 0.0       |
| 0.200     | 1020.0    | 0.800     | 1020.0    | 1.400     | 0.0       | 2.000     | 0.0       |           |           |
| 0.300     | 1020.0    | 0.900     | 1020.0    | 1.500     | 0.0       | 2.100     | 0.0       |           |           |
| 0.400     | 1020.0    | 1.000     | 1020.0    | 1.600     | 0.0       | 2.200     | 0.0       |           |           |
| 0.500     | 1020.0    | 1.001     | 0.0       | 1.700     | 0.0       | 2.300     | 0.0       |           |           |

#### Hydro-Brake® Optimum Outflow Control

| Unit Reference    | MD-SHE-0105-5000-1000-5000 | Sump Available                    | Yes   |
|-------------------|----------------------------|-----------------------------------|-------|
| Design Head (m)   | 1.000                      | Diameter (mm)                     | 105   |
| Design Flow (1/s) | 5.0                        | Invert Level (m)                  | 6.500 |
| Flush-Flo™        | Calculated                 | Minimum Outlet Pipe Diameter (mm) | 150   |
| Objective         | Minimise upstream storage  | Suggested Manhole Diameter (mm)   | 1200  |
| Application       | Surface                    |                                   |       |

| Control Points         | Head (m)   | Flow (1/s) | Control Points            | Head (m) | Flow (1/s) |
|------------------------|------------|------------|---------------------------|----------|------------|
| Design Point (Calculat | ed) 1.000  | 5.0        | Kick-Flo®                 | 0.637    | 4.1        |
| Flush-F                | 'lo™ 0.296 | 5.0        | Mean Flow over Head Range | =        | 4.3        |

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) | Flow (1/s) | Depth (m) | Flow $(1/s)$ | Depth (m) | Flow $(1/s)$ | Depth (m) | Flow $(1/s)$ | Depth (m) | Flow $(1/s)$ |
|-----------|------------|-----------|--------------|-----------|--------------|-----------|--------------|-----------|--------------|
|           |            |           |              |           |              |           |              |           |              |
| 0.100     | 3.6        | 0.800     | 4.5          | 2.000     | 6.9          | 4.000     | 9.6          | 7.000     | 12.5         |
| 0.200     | 4.8        | 1.000     | 5.0          | 2.200     | 7.2          | 4.500     | 10.1         | 7.500     | 12.9         |
| 0.300     | 5.0        | 1.200     | 5.4          | 2.400     | 7.5          | 5.000     | 10.6         | 8.000     | 13.3         |
| 0.400     | 4.9        | 1.400     | 5.8          | 2.600     | 7.8          | 5.500     | 11.1         | 8.500     | 13.7         |
| 0.500     | 4.7        | 1.600     | 6.2          | 3.000     | 8.4          | 6.000     | 11.6         | 9.000     | 14.1         |
| 0.600     | 4.3        | 1.800     | 6.6          | 3.500     | 9.0          | 6.500     | 12.1         | 9.500     | 14.5         |

# Appendix 9 Outline Drainage Maintenance Schedule

### **Maintenance Schedule**

| Project        | Newgate Lane, Fareham |
|----------------|-----------------------|
| Project Number | 23013                 |

By Steve Doughty

**Date** 25 May 2018

#### 1 Indicative Schedule of Maintenance

- 1.1 Once appointed the Contractor will prepare a site specific method statement for the control of silt and other pollutants during construction. CIRIA Report C532, Control of water pollution from construction sites, provides further guidance on this.
- 1.2 The Contractor will maintain the proposed drainage system during construction and until the handing over of the site. Upon completion the maintenance will be passed on to the property owner.
- 1.3 The following maintenance schedule details the typical tasks to be undertaken at different intervals.

| Maintenance<br>Schedule | Required Action                                                                           | Frequency                    |  |
|-------------------------|-------------------------------------------------------------------------------------------|------------------------------|--|
|                         | Remove sediment and debris from silt trap chambers, channel drains and inlet chambers     | 6 monthly                    |  |
|                         | Remove silt and debris from oil interceptor                                               | When alarm indicates         |  |
|                         | Litter and debris removal – catch pits                                                    | Monthly or as required       |  |
| Regular<br>Maintenance  | Surface and Foul water pipe work – jetting / rodding                                      | Every 2 years or as required |  |
|                         | Manage other vegetation and remove nuisance plants – aesthetics                           | As required                  |  |
|                         | Visual Inspection of permeable parking for defects and settlement                         | Annually                     |  |
|                         | Sweeping/brushing of permeable parking                                                    | Twice Annually               |  |
|                         | Remove debris/blockages to silt traps / channel drains                                    | As required                  |  |
| Corrective              | Repairs to access chambers / manhole covers                                               | As required                  |  |
| Maintenance             | Replace any broken permeable blocks/surface, remedial works to any depressions or rutting | As required                  |  |
|                         | Inspect inlet, outlet from downpipe and gullies for blockages, standing water and clear   | As required                  |  |

Indicative Schedule of Maintenance for the Proposed Drainage System



The Civil Engineering Practice
11 Tungsten Building
George Street
Fishersgate
Sussex
BN41 1RA

T. 01273 424 424 E. design@civil.co.uk www.civil.co.uk





| Inspection /<br>Action<br>Required | Gullies,<br>Channels<br>and Gutters | Catchpits | Oil<br>Interceptors | Permeable<br>Surface | Surface<br>Water<br>Pipework |
|------------------------------------|-------------------------------------|-----------|---------------------|----------------------|------------------------------|
| After leaf fall in Autumn          | <b>√</b>                            | ✓         |                     |                      |                              |
| 6 Months                           | ✓                                   | ✓         |                     | ✓                    |                              |
| 1 Year                             |                                     |           |                     | ✓                    |                              |
| 2 Years                            |                                     |           |                     |                      | ✓                            |
| When alarm indicates               |                                     |           | ✓                   |                      |                              |

**Drainage System Maintenance Summary**